
Vertex Shader Domain Warping with Automatic Differentiation

Dave Pagurek van Mossel
Butter Creatives

May 12, 2024

Figure 1: An airplane model undergoing an animated twist warp. Its vertex positions and normals are
updated in the vertex shader, with the fragment shader visualizing the absolute normal direction as a color.
After applying the warp, the output normals are accurate.

Abstract

Domain warping is a technique commonly used in cre-

ative coding to distort graphics and add visual interest

to a work. The approach has the potential to be used in

3D art as mesh vertices can be efficiently warped using a

vertex shader in a WebGL pipeline. However, 3D models

packaged for the web typically come with baked-in nor-

mal vectors, and these need to be updated when vertex

positions change for lighting calculations to work. This is

typically done via finite differences, which requires param-

eter tuning to achieve optimal visual fidelity. We present

a method for 3D domain warping that works with auto-

matic differentiation, allowing exact normals to be used

without any tuning while still benefiting from hardware

acceleration.

1 Introduction

Creative coding is an art form that uses the computer
and source code as an expressive medium. The pro-
cess of writing creative code is often characterized by

exploration and iteration (projects made in Process-
ing [11] are called “sketches” for this reason [5]) and
thus many commonly employed techniques are ones
with easily tweakable parameters that can generate a
wide variety of visual results.

One such technique is domain warping, used often
in 2D and some 3D contexts [13]. Given a function
f : Rn 7→ Rn that defines an offset for any point in
space, using the warp function w(x⃗) = x⃗+ f(x⃗), one
can warp any function whose domain is Rn by giving
it w(x⃗) as input instead of x⃗. It provides a framework
that invites exploration, as any offset function can
be used, producing varied, interesting results from
combinations of simple mathematical building blocks.
While some carefully tuned offset functions may have
physical motivations, such as the wave equations of
Dynamic Kelvinlets [3], this is not a requirement. Ar-
bitrary functions are useful tools in the creation of
surreal or abstract art, a common style in creative
coding [4, 9, 15].

This technique has the potential to fit nicely into a
3D workflow on the web: to warp the domain of a 3D

1

mesh, one can implement an offset function in a ver-
tex shader, which is the step in the pipeline responsi-
ble for transforming vertex positions into screen space
before rasterization. Running on the GPU, this is
likely the most efficient method of domain warping a
triangle mesh. Unfortunately, meshes packaged for a
WebGL pipeline typically bake in a normal vector for
each vertex. If one applies domain warping to vertex
positions without updating the baked normals, they
will no longer be perpendicular to the surface of the
mesh (visualized in Figure 2b) and will cause later
lighting calculations in the fragment shader to be in-
accurate. Using finite differences to approximate up-
dated normals requires parameter tuning for each use
to avoid visual artifacts, making it difficult to use in
a general system accepting arbitrary meshes and off-
set functions. We present an algorithm that leverages
automatic differentiation to generate an updated nor-
mal in any circumstance without parameter tuning,
enabling 3D domain warping to be used more easily
in web-based creative code environments.

2 Background

Domain warping. Domain warping in 3D is a
common technique used when raymarching signed
distance functions (SDFs) [13], found often in the
demoscene and on platforms like Shadertoy [8]. Un-
like triangle meshes, SDFs do not have baked nor-
mals that need updating: models are represented by
a function f : R3 7→ R describing, in theory, the
distance to the surface of the shape at a given point
in space, and in practice, a conservative estimate of
said distance. Shapes are then rendered by marching
(or “sphere tracing”) light rays through the scene, de-
tecting intersections using the scene SDF [7]. While
domain warping an inexact SDF can be as simple
as function composition, one cannot make use of ex-
isting triangle-based 3D models without a nontrivial
conversion that comes with performance tradeoffs [1].

Perturbing normals. In a mesh-based WebGL
pipeline, perturbations that update normals are used
at small scales to add extra texture to the surface
of a model. Traditionally, this technique is called

bump mapping and involves parameterizing the sur-
face of a model into two axes, u and v, and providing
a bump height h : R2 7→ R defined for each pa-
rameter value [2]. The bump map suggests a new
surface, where each point is moved along its normal
by the height defined by the bump function, yield-
ing p⃗′ = p⃗ + h([up vp]

T)n̂. One can then compute

a perturbed normal n̂′ = ∂p⃗′

∂u × ∂p⃗′

∂v . This formula-
tion does not depend on a specific parameterization
of the surface, so bump maps can be applied in a
fragment shader by using a local screen-space param-
eterization [10], relying on derivatives with respect to
neighboring pixels (dFdx(position) and dFdy(position)

in GLSL.)

Bump mapping intentionally only affects surface
lighting and not the geometry, and given this small
scale, only handles 1D height maps. If one wants
to apply similar techniques at larger scales using 3D
offsets, updated formulae are required. At larger
scales, the vertices must be updated in the vertex
shader, where one does not have screen-space deriva-
tives available. If one were to recalculate normals
using screen-space derivatives in the fragment shader
based on the updated vertex positions, the linear in-
terpolation between vertices becomes apparent, mak-
ing normals appear faceted instead of smooth, shown
in Figure 2c.

Finite differences. SDF raymarching code typ-
ically calculates normals via finite differences, ap-
proximating the normal (∇f(p⃗) when p⃗ is on the
surface) with, using the X axis as an example,
1
h

(
f(p⃗+ [h 0 0]T)− f(p⃗)

)
for a small value h. While

this method of calculating normals can also work in
a mesh-based WebGL pipeline, it requires simple but
tedious tuning of h to work well. To paint a pic-
ture of what picking h involves, its value needs to
be small enough to not lose detail, but not so small
that numerical precision issues become visible. Since
SDF raymarching is done per pixel, to be as large as
possible without losing visual detail, a recommended
heuristic for picking h is to try to make its footprint in
screen space approximately one pixel: small enough
that more accurate normals would not be visible, and
large enough to prevent aliasing. [14]

2

(a) Input (b) Warp without ad-
justing normals

(c) Warp with nor-
mals from screen-space
derivatives

(d) Warp affecting ver-
tices and normals

Figure 2: When applying a sine wave warp to the vertices of a sphere (a), the baked normals will be
incorrect (b) unless they are updated to account for the warp. Relying on screen-space derivatives of position
yields faceted normals (c), while computing normals in the vertex shader allows for smooth normals (d).

In the demoscene community, which produced
many contemporary SDF techniques, file size con-
straints are common (including the entire genre of
64K intros), so fine-tuning of parameters is a com-
mon and acceptable tradeoff for smaller code. Our
method, aimed instead at an audience interested
in easy experimentation and expression, sidesteps
this with a setup that leverages exact derivatives.
Comparatively, normals achieved through automatic
differentiation will be more accurate while having
equivalent computational cost [6], motivating our ap-
proach and its use of automatic differentiation in-
stead of approximation.

3 Method

The artist provides an offset function f : R3 7→ R3

defining, for an input point in 3D space, a 3D offset
to add to its location. We assume f is continuous and
differentiable. Each vertex position p⃗ on the mesh M
will be mapped to an updated position p⃗′ = w(p⃗) =
p⃗+ f(p⃗).

Each p⃗ from the input mesh comes with a corre-
sponding baked normal n̂. We are solving for the
vector n̂′, representing the surface normal of the de-
formed mesh M ′ at point p⃗′. This must be done in a
way that exact derivatives that can be feasibly calcu-
lated in a shader, with only knowledge of per-vertex

properties and not the whole mesh.

Our method achieves these goals in the following
steps:

1. We express derivatives of the warp function given
a local tangent and bitangent, which we then
use to generate a warped normal. Importantly,
the structure of the derivative formula depends
only on the warp function and accepts any local
parameterization, enabling one warp shader to
work on all meshes.

2. We provide a formula for a surface tangent and
bitangent given only the surface normal, allow-
ing inputs to Step 1 to be generated in a vertex
shader with limited knowledge of the mesh.

3. We describe a system to use automatic differen-
tiation to statically generate a shader with the
derivatives required for Step 1.

3.1 Updated Normals

Assume one has two unique vectors û and v̂ tangent
to the surface of the input mesh M at p such that
û × v̂ = n̂. One can approximate n̂′ by finding the
result of w on points near p⃗, shifted slightly along a
linear approximation of the surface at p⃗ by a small

3

value h:

n̂′ ≈

normalize

(
w(p⃗+ hû)− w(p⃗)

h
× w(p⃗+ hv̂)− w(p⃗)

h

)
Taking the limit as h → 0, this is equivalent to

taking directional derivatives of w(p⃗) in the directions
û and v̂:

n̂′ = normalize

(
∂w(p⃗)

∂û
× ∂w(p⃗)

∂v̂

)
= normalize

(
∂(p⃗+ f(p⃗))

∂û
× ∂(p⃗+ f(p⃗))

∂v̂

)
Since, by definition, û and v̂ are tangent to the

surface at p⃗, the directional derivative of p⃗ in the
direction of û or v̂ will be û or v̂ itself, respectively:

n̂′ = normalize

((
û+

∂f(p⃗)

∂û

)
×
(
v̂ +

∂f(p⃗)

∂v̂

))
Since f is defined in terms of Cartesian coordinates

and not the coordinate space defined by û and v̂, we
reframe the above expression to be in terms of the

Jacobian of the offset, J =
[
∂f(p⃗′)
∂x

∂f(p⃗′)
∂y

∂f(p⃗′)
∂z

]
:

n̂′ = normalize ((û+ Jû)× (v̂ + Jv̂)) (1)

To define J , we calculate all the partial first-order
derivatives of f , which will be implemented using au-
tomatic differentiation, described later in Section 3.3.
Importantly, this is independent of the choice of tan-
gent vectors: whichever ones we pick, the formula for
J does not change, so we do not need to run auto-
matic differentiation at runtime. It is sufficient to
run it once at compile time, and our runtime choice
of tangent vectors only adds a matrix multiplication
with J .

3.2 Picking Tangent Vectors

Without knowledge of the rest of the mesh vertices
and their connectivity, we can make assumptions
about the local surface around p⃗. The normal n̂ im-
plies that there is a surface plane S passing through p⃗
and normal to n̂. We can parameterize this plane into

a tangent û and bitangent v̂ by finding any vector ŵ
not equal to ±n̂, taking the cross product between it
and n̂ to get one vector parallel to S, and then taking
the cross product between that and n̂ to get another,
different vector parallel to S:

ŵ =

{
[0 1 0]T , n̂ = [±1 0 0]T

[1 0 0]T otherwise

v̂ = normalize(v̂ × n̂) (2)

û = v̂ × n̂ (3)

Since |⃗a × b⃗| = |⃗a||⃗b| sin θ, to get a unit tangent
vector from a cross product, one must normalize the
result if the two inputs are not orthogonal. Since ŵ
and v̂ are guaranteed by construction to not be par-
allel but may not be orthogonal, we must normalize
the result of their cross product in Equation 2 to get
v̂.

By combining Equations 2 and 3 with Equation 1,
we can fully compute a new n̂ that can be used for
lighting.

3.3 Automatic Differentiation

The derivatives in Section 3.1 are being used to com-
pute the Jacobian of the offset function ∈ R3×3 based
on an input position ∈ R3. Given that the outputs
are greater in number than the inputs, we opt for
forward-mode automatic differentiation.

The derivatives will be used in a shader, which has
limited language capabilities and resources. Rather
than creating structs in GLSL to create dual num-
bers and defining GLSL functions to operate on them,
we instead differentiate at compile time. We express
the offset function in a host language outside of the
shader, and from the host language, generate GLSL
source code for the shader that computes both the
offset and its derivatives. For each operation in the
computation graph, we can generate one line of GLSL
to compute and store the output of the computa-
tion, plus an additional line storing the derivative
of that graph node with respect to each indepen-
dent variable. In practice, we output more condensed
code, as we are able to compact multiple computa-
tion graph nodes up to a specified depth before out-
putting GLSL, as we find this easier to inspect and

4

debug. Listing 1 shows an example of this, with and
without condensed output.

4 Implementation

Targeting the creative coding community, our imple-
mentation comes in the form of the library p5.warp:
a plugin for the web graphics library p5.js [12] writ-
ten in JavaScript and GLSL. Artists specify an off-
set function f in Javascript through our API, a
shader generator using the builder design pattern.
The library provides builder methods corresponding
to mathematical operators and functions, allowing a
computation graph to be built with concise syntax.
The builder implements static forward-mode auto-
matic differentiation by outputting GLSL code con-
taining expressions that compute both f and its Ja-
cobian J .

The artist does not need to write any GLSL and
only needs to interact with our builder API. Artists
are free to use loops, make temporary variables, or
create and call functions while interacting with the
builder. These JavaScript constructs act as macros
with respect to the generated shader code, evaluated
at the shader’s compile time to generate static GLSL.
The API also provides access to inputs such as the
current time in milliseconds, the mouse position, or
the canvas size, which get turned into shader uni-
forms. Artists may define a warp in either model or
world space. Listing 2 shows an example of a twist
warp that animates back and forth over time, us-
ing the millis uniform to access time and using a
JavaScript function as a macro.

The output of the builder is spliced into a vertex
shader, where the normal-updating math from Sec-
tion 3 is implemented. The main subroutine of the
shader for a warp function defined in model space is
shown in Listing 3.

5 Results

Visuals. Figure 1 shows frames of an animated
warp applied to an airplane model, giving it a twist-
ing motion with cartoon squash and stretch. Exam-

Listing 1: Generated GLSL code for the Jacobian of
the offset function f([x y z]T) = [0.5 sin(0.005t+
2y) 0 0]T , with and without condensing the number
of intermediate variables in the output. The auto-
matic output has been manually formatted and in-
termediate variables have been manually renamed for
readability.

// One node per variable:

float v1 = millis * 0.005;

float v2 = position.y * 2.0;

float d_v2_by_d_y = 2.0 * 1.0;

float v3 = v1 + v2;

float d_v3_by_d_y = 0.0 + d_v2_by_d_y;

float v4 = sin(v3);

float d_v4_by_d_y =

cos(v3) * d_v3_by_d_y;

float v5 = v4 * 0.5;

float d_v5_by_d_y = 0.5 * d_v4_by_d_y;

vec3 offset = vec3(v5, 0.0, 0.0);

vec3 d_offset_by_d_y =

vec3(d_v5_by_d_y , 0.0, 0.0);

mat3 jacobian = mat3(

vec3 (0.0) ,

d_offset_by_d_y ,

vec3 (0.0)

);

// Condensed:

vec3 offset = vec3(

sin(time * 0.005 + position.y * 2.0)

* 0.5,

0.0,

0.0

);

vec3 d_offset_by_d_y = vec3(

0.5 * cos(

time * 0.005 + position.y * 2.0

)) * (0.0 + (2.0 * 1.0)),

0.0,

0.0

);

mat3 jacobian = mat3(

vec3 (0.0) ,

d_offset_by_d_y ,

vec3 (0.0)

);

5

Listing 2: An example of defining a twist about the
horizontal axis in p5.warp.

const twist = createWarp(

function ({

glsl ,

millis ,

position

}) {

function rotateX(pos , angle) {

const sa = glsl.sin(angle);

const ca = glsl.cos(angle);

return glsl.vec3(

pos.x(),

pos.y()

.mult(ca)

.sub(pos.z().mult(sa)),

pos.y()

.mult(sa)

.add(pos.z().mult(ca))

);

};

const rotated = rotateX(

position ,

position.x()

.mult (0.02)

.mult(millis.div (1000).sin())

);

return rotated.sub(position);

}

);

Listing 3: A vertex shader snippet calculating an up-
dated normal.

void main() {

// Start from attributes

vec3 position = aPosition;

vec3 normal = aNormal;

// Splice in auto - generated code.

// This defines ‘vec3 offset ‘, and

// three ‘vec3 ‘s for each column of

// the Jacobian: ‘dodx ‘, ‘dody ‘,

// and ‘dodz ‘

${outputOffsetAndDerivatives ()}

position += offset;

vec3 w =

(normal.y == 0. && normal.z == 0.)

? vec3(0., 1., 0.)

: vec3(1., 0., 0.);

vec3 v =

normalize(cross(w, normal));

vec3 u = cross(v, normal);

mat3 jacobian =

mat3(dodx , dody , dodz);

normal = normalize(cross(

u + jacobian * u,

v + jacobian * v

));

// Apply camera transforms

// and output

gl_Position =

uP * uVM * vec4(position , 1.);

// Pass on to fragment shader

vNormal = uN * normal;

}

6

ples of other warps applied to models can be seen
in figures 2d, 3, 4 and 5. For easier inspection of
accuracy, they have been visualized with a fragment
shader that outputs the absolute value of the updated
normal as the color. Figure 7 shows warps applied to
models as part of larger compositions, with lighting
calculations done in their fragment shaders.

(a) Input (b) Warped

Figure 3: A cube (a) passed through a warp made
with sine waves in each axis (b).

Performance. As a test of a typical use case, we
measured the performance of the animation shown in
Figure 1. It runs p5.warp on a mesh with around
14,000 vertices using a warp with 150 nodes in
its computation graph, rendering onto a 1200×1200
pixel canvas. It runs at 60 frames per second, the
imposed browser limit on a 60Hz display, on a 2021
MacBook Pro with an M1 Pro chip, a 2015 Intel Mac-
Book Pro with integrated GPU, and a 2021 Motorola
Edge Android phone in Google Chrome.
We stress-tested our method by increasing both

the number of vertices in the model and the num-

(a) Input [16] (b) Warped with
a twist

(c) Warped by
flattening

Figure 4: A bunny (a) retaining correct normals
when passed through warps that twist about the X
axis (b) and even after being flattened into the YZ
plane (c).

Figure 5: Frames of an animated warp inspired by the
“genie” animation while minimizing a window intro-
duced in Mac OS X.

ber of nodes in the computation graph. The results
are listed in Table 1. When increasing the vertex
count of the model, the MacBooks maintained 60fps,
and the tab on the phone crashed before losing 60fps,
suggesting that hardware memory limitations may be
the primary bottleneck for model size rather than
the performance of p5.warp with standard warp com-
plexity. We also experimented with increasing the
warp complexity by stacking random sine waves un-
til reaching a target number of nodes in the compu-
tation graph. This had a more noticeable effect on
frame rates: the phone begins to struggle at 1,500
nodes, and the 2015 MacBook begins to show signs
of slowing down at 3,000. We consider these to be ac-
ceptable limits, as our manually coded warps have a
smaller computation graph by a factor of 10, leaving
sufficient performance buffer room.

5.1 Discussion

Model resolution. Given two points p⃗ and q⃗ con-
nected by a straight edge on a mesh M , the ideal
form of the domain warped mesh has p⃗′ = w(p⃗) and

q⃗′ = w(q⃗) connected by a curve C(t) = w(tp⃗ + (1 −
t)q⃗), t ∈ [0, 1]. Since the outputted mesh in WebGL

will still connect p⃗′ and q⃗′ with the straight line seg-

7

2021 M1 Pro MacBook
Pro

2015 Integrated GPU In-
tel MacBook Pro

2021 Motorola Edge

14,000 vertices, 150 nodes 60fps 60fps 60fps
500,000 vertices, 150 nodes 60fps 60fps Crash
14,000 vertices, 1,500 nodes 60fps 60fps 26fps
14,000 vertices, 3,000 nodes 60fps 50fps 10fps

Table 1: Frame rates achieved using our method on a variety of hardware, model sizes (number of vertices),
and warp complexities (number of nodes in the computation graph.)

ment L(t) = tw(p⃗) + (1 − t)w(q⃗), the visual quality
of a deformed mesh depends highly on the distance
between the ideal curve C(t) and its approximation
L(t). The effect of model resolution on a high fre-
quency warp is shown in Figure 6.

(a) Input
(b) Warped, 20
edges/side

(c) Warped, one
edge/side

Figure 6: A cube (a) passed through a twist warp
when the cube has been subdivided into 20 edges per
side (b) and one edge per side (c). Without suffi-
cient polygon detail, the linear interpolation between
vertices fails to capture the full warp, producing self-
intersections and less accurate normals interpolated
over faces.

Continuum approximation. Warp functions are
defined over R3 as a continuum without knowledge
of the true shape of the model. While this method
has been used to implement efficient hand-animated
imitations of physical phenomena such as soft body
springiness or cloth in the wind, this method is not
suited for more accurate physics simulations where
forces propagate through the true shape of the mesh.

Degenerate offsets. Rendering is rarely affected
by the cases where the equations in Section 3 would

produce zero-magnitude vectors as normals. Equa-
tion 1 breaks down if either operand of the cross prod-
uct is a zero vector, or if both operands are equal to
each other. The former case happens if, for some tan-
gent vector ŵ, Jŵ = −ŵ, or in other terms, if J has
an eigenvalue of -1. Rearranging the equation for the
latter case, we find it is a special case of the former
case:

û+ Jû = v̂ + Jv̂

J(û− v̂) = −(û− v̂)

Jŵ = −ŵ, ŵ = û− v̂

A warp where ∃ ŵ | Jŵ = −ŵ is one that maps
some axis to a constant. As an example, take f(p⃗) =

−p⃗ + k⃗, which offsets any input to a constant in all
axes, turning it into the point k⃗. Its Jacobian matrix
is −I3, which has an eigenvalue of -1.

The previous example choice of f causes all nor-
mals to be degenarate, but by mapping all vertices to
a single point, the mesh will have no surface area and
no fragments will render, eliminating the problem. If
all vertices are mapped to a line, which also has no
surface area, similarly, no fragments will be rendered.
If all vertices are mapped to a plane, as would hap-
pen with f(p⃗) = [−p1, 0, 0]

T , which flattens to the
YZ plane, then some fragments will be rendered. In-
put normals tangent to the plane will have tangent
vectors that get mapped to zero, being perpendicu-
lar to the plane. A face whose vertices are all such
normals, if the normals are not askew from the face
normal, is itself perpendicular to the YZ plane, so it
will not get rendered, as it warps into a new face with
zero area. Given a face where just some of its ver-
tices have such normals, fragments in the middle of

8

the face will have normals interpolated between some
degenerate and some valid normals. In practice, this
is not a problem: degenerate normals are zero vec-
tors, and in the barycentric interpolation performed
by WebGL, one or two components being zero sim-
ply reduces the magnitude of the weighted sum of the
remaining vector components. Since the normal vec-
tor is normalized back to unit length in the fragment
shader after interpolation, resulting normals will still
be valid. Figure 4c shows the result of flattening to
the YZ plane, where all resulting normals point in
the X axis.
To summarize, offset functions that produce de-

generate normals do not render fragments unless
they collapse inputs to a plane. As long as faces
whose vertices all have parallel normals form a sur-
face that is itself perpenducular to those normals,
plane-collapsing functions still produce correct re-
sults due to barycentric interpolation and normaliza-
tion of normals.

6 Conclusion and Future Work

Domain warping, a common and versatile technique
in creative coding, is difficult to use in 3D due to
the need to recompute surface normals. We describe
a method of computing updated normals that can
be implemented in a vertex shader and present a li-
brary implementing such a shader, providing auto-
matic generation of the derivatives is requires. One
can then write any warp without worrying about in-
correct lighting or parameter tuning, enabling artists
to freely iterate.
With support for the WebGPU API now enabled

by default in Google Chrome and the access to mod-
ern hardware capabilities it provides, there may be
potential in the future to create new render pipelines
using compute shaders that address current WebGL
limitations. Our method currently lacks hardware-
accelerated adaptive subdivision based on the warp
function, which could perhaps be enabled with more
GPU flexibility.
Finally, the ability to warp using arbitrary func-

tions raises the human-computer interaction question
of how to best to let artists sculpt abstract warp

functions. Artists in the creative coding community
are open to exploring math directly, but future work
could include studies of more intuitive forms of warp
function control.

References

[1] J.A. Baerentzen and H. Aanaes. Signed dis-
tance computation using the angle weighted
pseudonormal. IEEE Transactions on Visual-
ization and Computer Graphics, 11(3):243–253,
2005. doi:10.1109/TVCG.2005.49.

[2] James F. Blinn. Simulation of wrinkled surfaces.
SIGGRAPH Comput. Graph., 12(3):286–292,
aug 1978. doi:10.1145/965139.507101.

[3] Fernando De Goes and Doug L. James. Dy-
namic kelvinlets: Secondary motions based on
fundamental solutions of elastodynamics. ACM
Trans. Graph., 37(4), jul 2018. doi:10.1145/

3197517.3201280.

[4] Matt DesLauriers. This is created with dense
vertical polylines warped by a noise func-
tion. Here is a close-up of the final ren-
ders, as well as three generations using lower
line counts to visualize the algorithm., Octo-
ber 2018. URL: https://twitter.com/mattdesl/
status/1047094498562625536.

[5] Benjamin Jotham Fry. Computational Informa-
tion Design. PhD thesis, Massachusetts Insti-
tute of Technology, 4 2004. URL: https://benfry.
com/phd/dissertation-110323c.pdf.

[6] Andreas Griewank et al. On automatic differen-
tiation. Mathematical Programming: recent de-
velopments and applications, 6(6):83–107, 1989.

[7] J. C. Hart, D. J. Sandin, and L. H. Kauff-
man. Ray tracing deterministic 3-d fractals. In
Proceedings of the 16th Annual Conference on
Computer Graphics and Interactive Techniques,
SIGGRAPH ’89, page 289–296, New York, NY,
USA, 1989. Association for Computing Machin-
ery. doi:10.1145/74333.74363.

9

https://doi.org/10.1109/TVCG.2005.49
https://doi.org/10.1145/965139.507101
https://doi.org/10.1145/3197517.3201280
https://doi.org/10.1145/3197517.3201280
https://twitter.com/mattdesl/status/1047094498562625536
https://twitter.com/mattdesl/status/1047094498562625536
https://benfry.com/phd/dissertation-110323c.pdf
https://benfry.com/phd/dissertation-110323c.pdf
https://doi.org/10.1145/74333.74363

(a) Repeated, warped copies of a 3D scan of a person, creating a
surreal composition.

(b) A warped spoon, playing on
The Matrix and René Magritte’s The
Treachery of Images.

(c) A recursive hand structure using
world-space warping to make fingers
wiggle.

(d) A bulge effect added to 3D text based on the mouse location.

(e) Pretend cloth physics applied via a warp to a rotating carousel of shirts, where each is a textured plane.

Figure 7: Examples of domain warping using p5.warp in different sketches, using lighting calculations in
their fragment shaders that make use of updated normals.

10

[8] Pol Jeremias and Inigo Quilez. Shadertoy:
Learn to create everything in a fragment shader.
In SIGGRAPH Asia 2014 Courses, SA ’14,
New York, NY, USA, 2014. Association for
Computing Machinery. doi:10.1145/2659467.
2659474.

[9] Ben Kovach. Art Blocks gave me the opportu-
nity to stretch this system to its limits. Edifice
plays extensively with color, layout, texture, per-
spective, and domain warping to produce images
that still consistently surprise me after generat-
ing tens of thousands of outputs. Here’s Ropsten
41, November 2021. URL: https://twitter.com/
bendotk/status/1455232555561754626.

[10] Morten S. Mikkelsen. Bump mapping un-
parametrized surfaces on the gpu. Journal of
Graphics, GPU, and Game Tools, 15:49 – 61,
2010. URL: https://mmikk.github.io/papers3d/
mm sfgrad bump.pdf.

[11] Processing Foundation. Processing, 2001. URL:
https://processing.org.

[12] Processing Foundation. p5.js, 2014. URL: https:
//p5js.org.

[13] Inigo Quilez. Domain Warping, 2002. URL:
https://iquilezles.org/articles/warp/.

[14] Inigo Quilez. Normals for an SDF, 2015. URL:
https://iquilezles.org/articles/normalsSDF/.

[15] Gaëtan Renaudeau. Cirque de lumières, 2021.
URL: https://gen.art/drops/lumieres.

[16] Stanford University. The Stanford 3D Scan-
ning Repository, 1994. URL: https://graphics.
stanford.edu/data/3Dscanrep/.

Index of Supplemental Materials

Source code for p5.warp and its GLSL-building capa-
bilities can respectively be found at:

• https://github.com/davepagurek/p5.warp

• https://github.com/davepagurek/glsl-autodiff

A snapshot of both repositories is present in the sup-
plemental material in a .zip file.

Author Contact Information

Dave Pagurek van Mossel
Butter Creatives
dave@davepagurek.com

11

https://doi.org/10.1145/2659467.2659474
https://doi.org/10.1145/2659467.2659474
https://twitter.com/bendotk/status/1455232555561754626
https://twitter.com/bendotk/status/1455232555561754626
https://mmikk.github.io/papers3d/mm_sfgrad_bump.pdf
https://mmikk.github.io/papers3d/mm_sfgrad_bump.pdf
https://processing.org
https://p5js.org
https://p5js.org
https://iquilezles.org/articles/warp/
https://iquilezles.org/articles/normalsSDF/
https://gen.art/drops/lumieres
https://graphics.stanford.edu/data/3Dscanrep/
https://graphics.stanford.edu/data/3Dscanrep/
https://github.com/davepagurek/p5.warp
https://github.com/davepagurek/glsl-autodiff
mailto:dave@davepagurek.com

	Introduction
	Background
	Method
	Updated Normals
	Picking Tangent Vectors
	Automatic Differentiation

	Implementation
	Results
	Discussion

	Conclusion and Future Work

